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ABSTRACT

The objects contained in a sequence of images may
be tracked from frame to frame by defining a comparison
function which evaluates the difference between descrip-
tions of object regions in adjacent frames. One can
then apply dynamic programming to discover the most tem-
porally consistent object region. Removing all descrip-
tions of this region from all frames allows dynamic
programming to be reapplied iteratively.
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L Introduction

As imaging hardware capable of capturing real-time

data evolves, the need increases for software which tracks

the motions of object regions. An extensive literature

already exists on tracking and motion. For a recent survey,

with a good bibliography see Martin and Aggarwal [1].

In this paper, we have devised a simple region track-
ing scheme which uses dynamic programming to organize the
search for consistent descriptions of regions appearing in
the frames of the sequence. The algorithm works in conjunc-
tion with a region proposer called "Superslice", described
in [2]. We present a brief description of Superslice for

clarity.
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2. Superslice - the region proposing algorithm

If one assumes that the desired objects in a scene may
be extracted by thresholding at some set of gray levels,
one may view the extraction of the above-threshold connec-
ted components as a process for producing candidate object
regions. One may then classify the candidates into object
regions and accidents (noise regions produced by threshold-
ing). The Superslice algorithm uses two general heuristics
and one piece of user-supplied knowledge. The first
heuristic demands that the interior of a region contrast
significantly with its surround. The second heuristic re-
quires that the border points of the region correspond to

positions of maximal edge detector response. Measures

associated with these heuristics may be computed as the

connected components are extracted. In addition, the user
may control the false alarm rate by specifying a size
range for object regions. The two measures and the size
range are then used to build a classification.

The regions which survive the classification process
have an inherent forest-like structure. Since an object
may be extracted by thresholding over a range of adjacent
gray levels, the candidate regions corresponding to the

object can be ordered by containment. The containment re-

lation defines the forest-like structure. A sequence of
nested regions which do not differ much in size and shape
may be considered to be a set of "exemplars" of the
object. Not all regions which survive the classification

step correspond to objects, however. A certain number of




accidents tend to be present as well. All regions which
do survive will be called "candidate object regions".

Other statistics besides the contrast, edge coincidence
and size measures are computed during the analysis. These
may include texture, shape, and positional information.

The frame to frame tracking process will use these features

to build consistent temporal sequences of candidate object

regions.
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3. Evaluating candidate object regions

There are two issues involved in finding a best
sequence of exemplars for an object by choosing one ex-
emplar per frame. First, within each frame we wish to
select the "best" among all exemplars for each object.
Second, on a frame to frame basis, we wish to avoid sudden
changes in size, shape, position or other descriptive
features associated with the tracked object. Realizing
the former goal involves defining a figure of merit so that
all exemplars of the same object may be compared among
themselves. The Superslice procedure provides such a
figure of merit based on the object/accident discriminant.
Other things being equal, one would wish to choose the ex-
emplar which represents the underlying object most closely.
In the absence of specific models for particular object
types, the general requirements of good contrast and good
border/edge match are appropriate. In the example to be
presented, the figure of merit was a weighted sum of the

three features, the third being the number of edge points

internal to the region.

Consider a sequence of exemplars for a single object

O NP

corresponding to a range of thresholds. Because the

sequence is nested we may speak of the "smallest" ex-

emplar, etc. Assume that a "correct" exemplar is known
(say, from additional ground truth). A "too small" ex-
emplar will tend to have lower contrast (since the ex-
terior neighbors of the border cells will in fact lie

within the object region) and lower border/edge match




(since the border points lie behind or just at the

shoulder of the edge ramp, while the maximum edge response

lies along the middle of the edge ramp). A "too big" ex-

emplar will exhibit a similar response pattern. However,

for the exemplars closest to the correct one, the features

will not behave consistently. The exemplars just larger

than the correct one often have more contrast due to the

‘;q (higher) ratio of interior points to border points.

l Given a figure of merit, one could choose the best
'"{ exemplar from each sequence in the forest. The corres-
| pondence of exemplars from frame to frame might then be
i~ made by some simple matching procedure or by some modifi-

s cation of the procedure to be described below. Tracking

based on best exemplars runs the risk that the best f;
- exemplar of an object in one frame bears little resemblance

to its best exemplar in the next. This may be due to

noise which afflicts certain frames more than others. The
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premise here is that an object does not change character

significantly from frame to frame and that the changes
which do occur should be smooth rather than abrupt.
Associated with each candidate object region is a
feature vector (along with the figure of merit). We can
measure the disparity or inconsistency between the candi-
date object regions by computing the normalized Euclidean
distance between the two feature vectors. By using

12 several features to define a disparity measure, we reduce

the sensitivity of the method to gross changes with re-
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spect to a single feature. As with the figure of merit, we
may weight the features eﬁtering the disparity computation
according to their frame to frame consistency. This
weighting can be guided by the semantics of motion (e.g.,
in plastic deformation, area and perimeter will remain
roughly constant, but second order moments will change).

For the example we investigated, an equal weighting

of features was chosen.
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4. The dynamic programming mcdel

In the previous section, we discussed two evaluation
functions: a static evaluation function S(c) defined for
each candidate object region c based on the figure of
merit, and a dynamic evaluation function D(c,c') which for a
any pair of candidates defines their disparity. Let E
ClreeesCy =C be a sequence of candidate object regions,

ending with the region c. We define the total cost of the

N =
region c as T(c) = ) S(c,) + D(ci,ci+l). S(c) is de-
: £ AR i=1

fined so that a perfect exemplar has a score of 0. Simi-
larly D(c,c) = 0.

Let {cij; j = 1,...,Ni} be the set of candidate re-

gions in the ith frame, i = 1,...,M. We define the
dynamic programming problem as: find {ci" ; 1= 1,M}
i

such that T(cM" ) is minimum over all selection functions,
M

m. The solution is achieved by the following:

Basis step: T(c,.) = S(clj); j = l,...,Ni

1j
Iterative step: T(°i+lj) = S(ci;lj) + min {T(ciy)
K=1,...,N.
i
+ D(cik'ci"‘lj) }

for j = 1,...,Nj4

The above procedure finds the minimum cost sequence
of candidate object regions. Candidate regions which are
accidental are unlikely to persist from frame to frame;

thus their D terms are likely to be large, thereby increasing




the total cost of any sequence which includes them. Note
that there will be many sequences which are only slightly
more costly than the minimum. These suboptimal sequences
will be based on other exemplars for the same object.

The optimal sequence is thus optimal for the particular
formulations of S and D. Giving more weight to S and less
to D will tend to select best exemplars; while the reverse
weighting will tend to favor frame to frame consistency.
Once again, a semantic model can provide guidance.

In general, the image sequence may contain more than
one object. The scheme described above identifies the
"best" object region sequence. In order to extract region
sequences corresponding to other objects in the image
sequence, we must delete all candidate object regions
accounted for by the optimal sequence. The inherent data
structure specifies which regions are exemplars for each
object. By deleting all candidate object regions in each
frame which are similar to the selected region of the
optimal sequence (i.e., contain it or are contained in it),
we can set the stage for another application of dynamic
programming. This process is repeated until only very
poor (high cost) sequences are obtained. Presumabl&, at
this point all objects have been accounted for.

Occasionally, a deletion step may leave a particular
frame empty of candidate object regions. This may occur
for two reasons: All objects were accounted for by the
last dynamié programming step, or the candidate region

proposer failed to elicit an exemplar for an actual object.




In the former case, the process will have terminated.
The latter case can be handled by associating a fixed
"empty frame" cost which is the price paid for skipping a
frame. Of course, one can't know which case applies. The
conservative approach is always to assume the second case
and apply the empty frame cost. The termination criterion
will then be based on a threshold for the total cost,
i.e., terminate when only costly sequences remain.

The problem of an object leaving the field of view
can be handled in a different manner by flagging candidate

object regions which lie on the border of the image. A

partial sequence whose last element is flagged but which

overall has low cost can be accepted as depicting an

object which has moved off the image.




| S A e L ol R S S 6 i S SRS Sl N e o s ey i i L il A b o v i i B i e

=
; \J

iz w TR TR Fros

5. Experimental results

The dynamic programming algorithm described above has
been implemented and tested on a sequence of ten windows
of FLIR data containing a tank (Figure 1). These windows
have already been smoothed by a 3x3 median filter to pro-

vide better response to thresholding. The Superslice

algorithm extracted a modest number of candidate object re-

gions. Figure 2 displays these regions (although for

nested sequences only the best static exemplar is displayed).

Table 1 shows the feature values associated with each
candidate in the first two frames. The solution to the
dynamic programming problem was computed and the exemplars
which correspond to the solution are shown in Figure 3.
There are of course many suboptimal solutions which are
quite similar to this one. Their cost is not significantly
greater than the minimal cost. When the indicated regions
were deleted along with all other similar candidates, the
only remaining regions corresponded to noise and any
minimal cost path attempting to span several frames was
substantially more costly than the optimal path or any of
its similar suboptimal paths. It seems reasonable to
establish thresholds for static and dynamic cost in order
to prune the search space. More sequential data bases are

needed to determine the extent to which these comments are

valid.
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Figure 1. A sequence of 10 median filtered FLIR windows of a tank.

Figure 2. Output of the Superslice region proposing algorithm.

Figure 3. Optimal sequenced regions using dynamic programming.
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6. Conclusion

Objects may be tracked in a sequence of scenes in
which frame to frame change is slight. The dynamic pro-
gramming method relies on the heuristic that even though
some motion or change may have taken place in the scene,
descriptions of the same object tend to cluster more
closely than do descriptions of different objects. Thus,
a measure based on similarity and consistency can provide
a reliable match function even in a dynamic environment.
After an object has been tracked consistently through a

sequence of frames, one may measure its motion, deforma-

tion, etc.
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